NH
& JOURNAL OF

\$ e T VAR
@ GEOMETRY Ako

PHYSICS
ELSEVIER Journal of Geometry and Physics 43 (2002) 293-309

www elsevier.com/locate/jgp

On Spin(7) holonomy metric based
on SUR)/U1): I

Hiroaki Kannd®*, Yukinori Yasui®

2 Graduate School of Mathematics, Nagoya University, Nagoya 464-8602, Japan
b Department of Physics, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan

Received 20 September 2001

Abstract

We investigate the Spiid) holonomy metric of cohomogeneity one with the principal orbit
SU@3)/U (). A choice ofU (1) in the two-dimensional Cartan subalgebra is left as free and this
allows us to manifesEs = W(SU(3)) (=the Weyl group) symmetric formulation. We find asymp-
totically locally conical (ALC) metrics as octonionic gravitational instantons. These ALC metrics
have orbifold singularities in general, but a particular choice oftifi#) subgroup gives a new
regular metric of Spif7) holonomy. Complex projective spa€(2) that is a supersymmetric
four-cycle appears as a singular orbit. A perturbative analysis of the solution near the singular orbit
shows an evidence of a more general family of ALC solutions. The global topology of the manifold
depends on a choice of tii&(1) subgroup. We also obtain drf-normalizable harmonic 4-form in
the background of the ALC metric.
© 2002 Elsevier Science B.V. All rights reserved.

MSC: 53C29; 53C38; 81T30
Subj. Class.: Spinors; Twistors

Keywords: Exceptional holonomy; Metric of cohomogeneity one

1. Introduction

In supersymmetric compactifications of superstrings &htheory the compact mani-
fold must allow parallel spinors and hence has a special holonomy. Among manifolds of

* After we submitted this paper to e-prints archives, we noticed a new fiapgmwhich has a considerable
overlap with our paper. Many of our results have also been obtained in Sectid@ 8 ahd we find a complete
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regular solution obtained as a special case of our ALC solutions is constructed independently and employed in
theory compactification.
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special holonomy, the holonomy grou@s in seven dimensions and Spi in eight di-
mensions are exceptional ones. Recently, compactification ttieory onG, manifold
has been discussed extensively in connection Witk 1 supersymmetric gauge theory in
four dimensiong1-5]. Though it is less studied, the geometry of Sfginmanifold is rel-
evant to three-dimensional = 1 Yang—Mills theory. Manifolds of exceptional holonomy
with branes wrapping on a supersymmetric cycle are also useful for establishing the grav-
ity/gauge theory correspondence that generalizes the AAS/CFT correspondence. In addition
to few basic examples @, and Spiri7) metrics on the total space of vector bunds],
we now have an increasing list of explicit metri8s-14]. All these examples are metrics on
non-compact manifolds and of cohomogeneity one. There is a (rigid) supersymmetric cycle
and the non-compact manifold may be identified as the normal bundle of the supersym-
metric cycle. In studying the dynamics of supersymmetric compactifications of superstring
and M theory, we are especially interested in the behavior when the manifold develops
singularities. Potentially there are various types of singularities, but an important class of
singularities in supersymmetric dynamics is the isolated conical singularity that arises when
a supersymmetric cycle is shrinking. In such cases the stringy geometry is believed to be
governed by a tubular neighborhood of the singularity or the shrinking supersymmetric cy-
cle, where the above explicit metrics on the normal bundle are available. Furthermore, the
geometry of such metrics often shows some universal feature that is independent of the way
singularities or supersymmetric cycles are embedded in a manifold of special holonomy.
The geometry of ADE singularities iki 3 surface and the conifold transition in Calabi—Yau
threefold are typical examples and we expect it is also the case with exceptional holonomy.
Let us review the basic geometry of manifolds of cohomogeneity one, folldd/Bel 7]
A Riemannian manifoldM, g) is called cohomogeneity one, if there is an isometric action
on M of a Lie groupG with generic orbit of codimension one. The generic ohjtK is
called principal orbit. There is an open interyah real numbers with coordinatesuch that
M :=1 x G/K is an open dense subsetfifi The compliment of¥/ consists of singular
orbits of lower dimensions, where we have a larger isotropy subgkb(fif C H C G).
A tubular neighborhood of the singular orlgit = G/H is diffeomorphic to an open disk
bundle of the normal bundle @). Then the principal orbits are the hypersurfaces which
are the sphere bundles ov@r This meansH /K is diffeomorphic to a sphers*. Thus,
as the radius of the sphere tends to zero, the principal orbits collapse to the singular orbit.
Furthermore, the existence of a smooth complete metric on the normal bundle implies that
the singular orbit must be a minimal submanifold. We see the metric of cohomogeneity
one is well suited for describing the geometry of collapsing supersymmetric cycles by
identifying its normal bundle with a manifold of cohomogeneity one. To find out explicit
metrics we begin with the fact that di the metricg takes the following form:

g=d’ +g,. (1.1)

where the interval becomes a geodesic line. For each fixed “timeJ; is a homogeneous
metric of the principal orbiG /K . Hence if we assume that the metric is of cohomogeneity
one, the condition of Ricci-flatness, or the Einstein equation in general, is reduced to a system
of non-linear ordinary differential equations with respect to the transverse coorditwate

the principal orbit.
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In this paper, we consider eight-dimensional metrics of cohomogeneity one with the
principal orbit SU3)/ U (1). Part of our analysis is quite parallel to the case with the principal
orbit Sp(2)/Sp(1) which has been worked out 0], but there is a new feature that arises
from the Weyl group symmetris = W(SU(3)). We shall pay attention to this symmetry.

In Section 2 we derive a first-order system of non-linear differential equations from the
octonionic self-duality of the spin connection. If we choose vielbein (or metric ansatz)
appropriately, the octonionic self-duality of the spin connection implies an existence of
covariantly constant 4-form which characterizes $pimolonomy. We also show that there

is a superpotential which implies the first-order systemSéwction 3 we present special
solutions which give asymptotically locally conical (AL{)0] metrics. Our ansatz for
special solution was motivated by the on¢li]. Compared with ALC solutions if10,13],

our solution takes more general form to keep the Weyl grbggymmetry manifest. The
singular orbit of SY3)/ U (1) model is the complex projective spacl(2) = SU(3)/U (2)
which is self-dual Einstein but not spin. This is in a sharp difference from t2) 5pp(1)

case whose singular orbit is the four-dimensional spliére Sp(2)/Sp(1) x Sp(1) which

is self-dual Einstein and spj]. Thus the issue of global topology is more subtle in our case.
We make a perturbative analysis around the singular orl$eiction 4and find one more
parameter in addition to the scale parameter in the explicit ALC solutioBsétion 3 This
additional parameter is an evidence for the existence of non-trivial deformation of our ALC
metrics and numerical simulations support itSaction 5we discuss the global topology
that depends on a choice of the embedding ¢f) subalgebra. In general the fiber over the
singular orbitCP(2) is the Lens spac&?/Z,, which leads to orbifold singularities. But there

is a particular choice of/ (1) embedding which is free from orbifold singularities. With
this choice ofU (1) subalgebra, our ALC solution gives a new S@inmetric on a vector
bundle overCP(2). Finally, Section 6is devoted to the construction @?-normalizable
harmonic 4-forms in the background of ALC metrics, which we can employ in constructing
supersymmetric M2-brangs—11].

2. Octonionic instanton equation

We consider an eight-dimensional metric of cohomogeneity one with the principal
orbit SU3)/ U (1). Itis convenient to describe homogeneous metric in terms of the Maurer—
Cartan forms of SI(B). The Maurer—Cartan equation is presentedjppendix A We take
abasisTs, Ty of the Cartan part angh », X1 2, t1,2 of non-Cartan part. The Weyl group of
SU(3) is the permutation group's and our basis is chosen so that the Maurer—Cartan equa-
tion exhibits Y3 symmetry. The isotropy representation of @YU(1) is
decomposed as

U3 _ P1 @ P2 D P3 ® Pa, (2.1)
u(1)
wherep; (i = 1-4) are irreduciblé/ (1)-modules with dinp; = dimp, = dimpz = 2
and dimpg = 1. Our metric ansatz is diagonal with respecfad.) for all 7,

g=di? +a(t)?(02 +02) +b(1)2(Z2 + 22 + c()?*(t2 + D) + f(1)°T2.  (2.2)
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We have taken a quotient by thE 1) subgroup generated 5. The vielbein of the above
metric is

O=d, el=a@or, P =al)or, S=b1)X1, ' =b(t)X,

e® = c(t)11, 8 = e, e = f()Tq. (2.3)

The spin connectiongy, is obtained from the conditioBe* = de® + way A ¢? = 0. We
consider the octonionic self-duality of the spin connection

wab = 3Wabcd@eds (2.4)

where totally anti-symmetric tensdty,cqg is defined by the structure constants of octonions
Yapc as follows:

1
Wabeo = Yabe: 1<a.b,c,...,<T7, Wabod = — 3 €abodelg Velg- (2.5)
It can be shown thgR.4) implies the 4-form defined by

b

1
2 = = Wapege® Ae® A€ A e (2.6)

41

is closed and the metric has Sgim holonomy[18]. Explicitly, the octonionic instanton
equation in the present case is given by the structure constants:

Yane = +1  for (abc) = (721), (641), (135), (254), (263, (374), (765). 2.7)

We obtain the following first-order differential equations:

a b+c?—-a f b ?+a®—b? f
_Z—_aA_25 _Z—_ﬂA_za
a abc a b abc b

2,12 2 ;
¢ a*+b-—c f f f f f
= —yas, L=axt R Z, 2.8
c c AC2 f aAaz +13Ab2+yAcz ( )

where the parametets,, 84, ¥4 appearing in the Maurer—Cartan equatioriraf satisfy
the “traceless” conditioms + B4 + ya4 = 0. These parameters have to be rational for the
U (1) subgroup generated kg to be a closed subgroup (see asection 5. We assume
this condition required by topological consistency in the following. Then there exists an
integer N so that(aa, Ba, ya) = (1/N)(n1,n2,n3) andn = (n1, n2, n3) are integers
with no common divisor. Sinc# is eliminated by the rescalinf — Nf, we may assume
(x4, Ba, ya) = (n1, n2, n3) without any loss of generality. Our Sgify gravitational in-
stanton equation is manifestly symmetric under the permutation gkaug W (SU(3)),
which can be regarded as the Weyl group of(SU

We can also derive the octonionic instantmuation (2.8from the Lagrangian formu-
lation. In the description of the extrinsic geometry of hypersurface, the shape op&adtor
the principal orbit SW3)/U (1) C M satisfies the equatida 7]

¢ =2g,0L. (2.9)
1 An appropriate permutation of the indices and the overall parity (sign) change are necessary to match our

convention to the standard one. This parity change is an analog of the exchange of self-duality and anti-self-duality
in four dimensions and related to the orientation of the manifold.
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For the metriq2.2) it has a diagonal form

ﬁ(l)=diag<;, PR E,;,?) (2.10)

The Ricci-flatness condition then beconjizg]
L+ (trL)L —Ric=0, (2.11)
tr £ +tr(£%) =0, (2.12)

where Ric denotes the Ricci curvature of the mejrion SUS)/ U (1). Eq. (2.11)expresses

the Ricci-flatness condition in directions tangent to the principal orbit, wi2il&2) is
obtained by considering the normal direction, izedirection. The Ricci-flathess of the
mixed directions is automatically satisfied. This system of non-linear differential equations
is described by the Lagrangidn=T7 — V:

T = ((tr £)® — tr(£?))/detg;, V = —R./detg,, (2.13)

where deg, = a*b*c* f2 andR is the scalar curvature @f. After some calculation, we
find

2 2 2 2 2 2
a b c 6 6 6 o [ny n5 ng
R=‘2(bzcz+azcz+azbz‘ﬁ‘ﬁ‘:z)‘zf (a—ﬁﬁ*? -

(2.14)

If we take the trace of2.11)together with(2.12), we obtain
(tr £)?> —tr(£% — R =0, (2.15)

which gives a constrainE = T + V = 0 of this system. Therefore, the trajectories of
“point particle” living on the level seE = 0 represent Ricci-flat Riemannian manifolds.
Introducing a new time parametedefined by d = a2h%c? f dr, we can write the kinetic
term as

= ;gij%%, (2.16)
where the metric is given by
4 8 8 4
8 4 8 4
5i=lg g8 4 4l 10
4 4 4 0

anda’ = (a, B, y, o) witha = ¢, b = e, c = ¢, f = ¢°. The potential is expressed
in terms of a superpotentidll as

1,90Waow

V=—ZTpl__~

2% 9ai dai (2.18)
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with

W = dabcf(a?® + b + ) + 2f2(nlbzc2 + noa®c? + n3a®b?). (2.19)
Thus the Ricci-flathess condition follows from the gradient flow equation:

de! W
bl 2.20
drt ¢ dal ( )

which reproduces the instantenuation (2.8)

3. ALC solutions

Let us first make a change of variable defined by=dl f(r) dr and take the following
ansatz to solve the instantequation (2.8)

2 2ng 2 2n;
a%(r) = r—a)(r —ag),  bA(r) = (r — B — Ba).
—az B1— B2
2
Ar) = —2(r —y1)(r — y2), (3.1)
Y1— Y2

so that we have?(r), b2(r), c?(r) ~ r? asr — oo. The overall normalizations are fixed
by the requirement that we can make a quadrature of the differential equatigir-foro
obtain

(r —a)(r = B)(r —y1)
(r—a2)(r — B2)(r —y2)
Since f(r) ~ constant as — oo in our ansatz, asymptotically there is sthof a constant

radius at infinity. Thus solutions obtained by this ansatz will give ALC metrics in the sense
of Cveti et al.[10]. We find that if the parameters obey

) =

(3.2)

a1 — ap = 2n1, B1— B2 = 2n2, Y1 — y2 = 2n3, (3-3)
and
a1+ B1= 2y, B1+ y1 = 202, y1+ a1 = 2p2, (3.4)

then the ansat{B.1) gives a Spil7) gravitational instanton. We have expressed the condi-
tions in a completely3 symmetric manner. Note that due to the constrartno+n3 = 0,

one of the six conditions is redundant and we have one free parameter that corresponds to
a translation of the radial coordinateAfter rescaling the radial coordinate—~ /¢ by an
arbitrary positive parametémwith dimensions of length, our ALC solutions can be written

as

a?(r) = (r —a1)(r —azl),  b2(r) = (r — fr)(r — B20),

200 — (r _ _ 2,1 _ ,2r—a1)(r = frO(r — y10)
c“(r) = (r = (r — y20), fer)y =¢ Y Yy ——"

(3.5)
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with the conditiong3.3) and (3.4) The asymptotic form of the metric is
g ~ dr? + r2dse + £°T2, (3.6)

where d2g is a homogeneous metric on the flag manifold(SYU (1) x U (1), which is
the twistor space dEP(2).

Let us look at a few special examples, where a cancellation of a zero and a pole of the
rational functionf? takes place.

1.n=(,-10
In this case we can taka = y» = 0 by a translation of. Then the solution is

a?(r) =@ - 300 +30, P =0+300 30, F0)=r?
,(r =30 + 40

2
=/ .
FO=EE 300 -30

(3.7)

The solution has the same structuss newG, metrics in[13] based ons® x $2.
The metric is regular in the region> 4¢/3. At the boundary:? — 0, f2 — 0 but
b% = ¢? = 16¢2/9. Sinceb? andc? approach the same boundary value, we HaR€2)
as a singular orbit (see the next section).
2. 7i=(1 -2
In this casey; = f; has to be satisfied and we obtain a reduced solutionafita 5.
We takea; = 81 = 1. Then the solution is

a’r) = —O@F +0), b2(r) = a?(r), A= +30 —0),
P20 2 (r — O)(r + 30)

(r+0)? (3.8)

We see the solution has the same form as the simplest solution (den@&ejlamaong
new Spir(7) metrics in[10]. The metric is regular in the region> ¢ and atr = ¢ all
the coefficients are linearly vanishing. Thus the principal orbit3WU (1) collapses to
a point and the manifold has curvature singularities at ¢, since SWY3)/U (1) is not
homeomorphic ta”.
3.1=(2 -1 -1
This is obtained from the second example simply by the sign flip and a permutation,
but the global topology is different as we will see shortly. In the same way as above the
solution is

a?(r)=(r—300+0, PO =c—-00+0,  Ar) =b0r),
2.\ 2(r+ 0 —30)
f (r) - E (r _ 6)2

The regular region is > 3¢ and in contrast to the second example we HaR€2) with

(3.9)

2 Itis only at the level of solutions to the first-order system and does not mean the geometry is the same, since
the starting coset space is different.
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finite volume at the boundary. This solution corresponds to the solution deBgtied
[10].

4. Perturbation around the singular orbit

In this section, we will give a perturbative expansion in a small neighborhood of the
singular orbit(z = 0) for the Spin7) gravitational instantoequation (2.8)A mathemat-
ical foundation may be found ifiL7]. Our metric is written in the fornyg = dr? + g,
whereg; (t > 0) is a one-parameter family of $B)-invariant metrics on the principal
orbit SU3)/U (1). We assume that near the boundare 0 the orbit is locally of the
form

SU® 5 SUB)

U X —U(2) , (4.2)

wheres$2 denotes a round 3-sphere whose radius tends to zere-ad, and the singular
orbit SU(3)/U(2) is a complex projective spa€eP(2) whose size remains non-vanishing
att = 0. Thus, if we choose the rate of collapse of Sfdactor appropriately, the manifold
approache®* x CP(2) at short distance; it has topologically the same local behavior as
the hyper-Kahler manifold* CP(2). In general a singular orbit gives a singularity of the
instanton equation and we have no smooth solution at the singularity. However, in our case,
the very geometric nature of the equation allows a smooth solution in a neighborhood around
a singular orbit.

Due to theX3 symmetry of our instanton equation, we have three types of possible
boundary conditions for the limit— O:

T2

g — di? 412 (—fz‘ +012+c722> +m?A(ZZ+ ZZ+ 1+ D), (4.2)
ny
T2

g — dr? 412 (—fz‘ + 324 22?) +m?(0? + 02 + 12 4 12), (4.3)
n3
T2

g — di? 472 (n—fz‘ +r12+r22) +m?(0 405+ 52+ 53, (4.4)
3

wherem is a scale parameter corresponding to the siZeéR®). By choosing a boundary
condition theX's symmetry is broken to the, symmetry. For each choice of the boundary
condition which specifies @P(2) embedded in S(B)/ U (1), the unit volume element,

(¢ =1, 2, 3) of theCP(2) is given by

SAet Ae® A b, Jo=et ne? Aed Aeb, U3 =et ne? Aed A et

(4.5)

v1=¢e

respectively. For all three cases the calibratf@ris given by(2.6) satisfies the equation
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|£2(vy)| = 1. We therefore see that the singular of®R(2) appearing at the boundary is a
Cayley submanifold (supersymmetric four-cycles) in $pjirholonomy manifold.

The solutions with these three boundary conditions and the correspcBBifR)'s are
permuted by the action a¥'s. For concreteness, we will consider from now on the first
boundary conditior{4.2). The quantity=? + X2 + t2 + 2 represents the Fubini—Study
metric onCP(2) and T2/n? + o2 + o2 locally the metric on the unit 3-sphere. More
precisely, the metrig would have an orbifold singularity at= 0 unless we choose the
value of7 appropriately, since the latter represents the metric on the Lens Spatgin
general rather thas® globally (see the next section). The perturbative series expansion
around the singular orbP(2) yields

2
a(t):t(l—}(Q+1)<L> _|_...>’
2 m
2
b(t):m(1+}(4_2>(i> +)
6 ni m
2
c(t)=m<1+}<4—E) <L> _|_...>’
6 ni m
t t\?
f(f)=—<l+Q<—) +) (4.6)
ni m

It should be noticed that the solution is not uniquely determined by the boundary condition
and it includes an additional free parameggr The expansiorf4.6) is a consequence of

the assumptior4.2) and valid for any solution that is smooth around the singular orbit.
However, it is not at all clear that the local perturbative solu{®8) can be extended to a
global complete metric. There should be some boun@ ¢hat may depend on a choice of

7. One can obtain an example of local solution that extends to a complete metric by setting
n= (1,1, —2)°%andQ = —2/3. Thenit can be extended to the Calabi hyper-Kahler metric
onT* CP(2) of Sp(2) holonomy[9,15]

a?(r) = %(rz —m?),  br) = %(r2 +m?), ) =r?

) = é (1— (?)4> (4.7)

with dr = dr/(1 — (m/r)*)¥/2. Note that the asymptotic behavior of the Calabi metric at
infinity is different from the ALC metrics.

We can also find the specialization which reproduces the ALC metrics described in the
previous section. Let us consider the solut{8rb) whose radial coordinate is constrained

3 With this choice ofi the ALC solution cannot have a singular orbit with finite volume (see the second example
in Section 3.
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to ber > a1£. From the condition§3.3) and (3.4)ve have

a1 —az = 2ny, o1 — 1= 3(n1—n2), o1 — B2 = S(n1—n3),

o1 —y1=4(m1—n3),  a1—y2= 5(n1—no). (4.8)
Thus if we choose the parameieas

n1 > 0, ni > no, ni > ns, (4.9

then the solutiofa, b, ¢, f} is non-vanishing in the region> «1¢, and so the ALC metric
is non-singular. The behavior of the metric neat «1¢ is given by

T2
g — dp? + p? (73 +o2+ 022) + 021 — B (a1 — B) (] + T3+ 17 + 1),
1

(4.10)

wherep? = f(a1 — a2)(r — ard). Settingm = €+/(a1 — B1)(a1 — B2), we reproduce
Eq. (4.2)and higher order calculations yield the relation

0=-2 <13+ 2”22”3) . (4.11)

27 ng

The parameterin the perturbative solut@immplies a possibility of non-trivial deformations
ofthe ALC solutiong3.5). Although we have not been able to find general solutions in closed
form, numerical simulations of the instanton equation indicate a family of global solutions
under some conditions ap. For example, in the case af = (1, —1, 0), the condition

is given by Q0 < —0.35 approximately and the exact soluti(h7) with 0 = —26/27

is included in this region. The existence of more general solutions is also supported by a
similar analysis for the coset space(3ySp(1), where the general solutions of complete
metric have been obtain¢td]. In Appendix B itis shown briefly how we can accommodate

a local perturbative analysis around the singular orbit q2B{Sp(1) model to the global
solutions in[10].

5. Theissue of global topology

Let us consider the global topology of solutions with boundary cond{#o?) by cal-
culating explicitly the 1-formsr, o andT, describing the metric on the unit 3-sphest®
locally. Our calculation shows that near the boundary the topology of the principal orbit is
in generalS‘3/an x CP(2) rather thars® x CP(2). The integer; comes in here since we
take the first boundary conditigqd.2). For other boundary conditior{4.3) and (4.4)n1 is
replaced by:o or nz accordingly.

To consider the topology of the fiber over a point of the base sER@) we fix
the coordinates 08P(2). ThenX; = r; = 0 on the fiber and the S@) Maurer—Cartanpar
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equation reduces to the following form:
do1 = «aTa No2+kpTg A o2, doo = —kaTa ANo1—kpTg A o1,
dTs = 20401 A 02, dTp = 2ago1 A oo. (5.1

In fact, this Maurer—Cartan equation comes from the following choice of the genefators
(e =1,20rA,B)of U(2):

0 0O 0O 0 O
E1=]0 0 1], Eo=10 0 —i],
010 O i O
1 ap 0 0 1 oA 0 0
EA:_Z 0 g 0], EBZZ 0 B+ 0 |]. (5.2)
0 0 yp 0 0 ya
By expanding a left invariant 1-forma of the subgrou@/ (2) ¢ SU(3)
w=1(01E1+02E2+TaEs + TgEpR), (53)
and using the relations ippendix A we can check the equatiomd w A w = 0 implies

(5.2).

The left invariant 1-formw is represented by = g~1dg in terms of a group element
g € U(2). To parameterize the group elementve use Euler angle®, ¢, ¥) with the
range

0<6 <m, 0< ¢ < 2nm, O<vy <4n (5.4)
of SU(2) and aU (1) coordinatey defined by
Up(1) = exp(3iAx Ep) = diage"11/2, gnax/2 gnax/2), (5.5)

where(n1, n2, n3) := (x4, Ba, ya) are integers with no common divi§0$atisfying the
traceless condition; + np + n3 = 0. With these coordinates the group elemeig given

by
— d(@®/2)E3 J(0/E2 d(V/2)E3 (Ax/DEp
8@, 0,9, x) =¢ e e e
gnix/2 0 0

0 COS<€> dW+o+n2x)/2  gjn <€> e i(W—¢—n3x)/2
2 2

— , (5.6)
. (0 o 0 . _
0 —sin E e'(‘// ¢+n2x)/2 cos E e i(Yy+p—n3x)/2
where
0O 0 O
E3=apsEs+agEg=|0 1 O (5.7)
0 0 -1

4 See the discussion beldig. (2.8)
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We now obtain the 1-forms frorfb.3)

o1 = 3iN6 cos(y + 3(nz — n3)x) dp — 3 sin(y + 3(nz — n3)x) o,
02 = 3 SINO SIN(Y + 5(n2 — n3)x) dd + 3 COS(Y + 3(n2 — n3)x) do,

Ty = 3n1(dy + cosd dg). (5.8)
These 1-forms give a metric

i 2 2_ 1 o (2 2, 1 2

£ +o0f +03 = 7(09° + sin“0 dg*) + 2 (dy + cosf do) (5.9)

n

on the coset spadé(2)/ Uy (1) whose topology is locallys®, but not globallys3. In fact

for each integep =0, 1, ... ,n1 — 1 we can find an integer such that we have
4 p 4 g

Thusthe angle is identified withyy +47 p/n1, which impliesEqg. (5.9)expresses the metric
on S3/Z,,1. This is the total space df (1)-bundle overs? with a connection (Wu—Yang
monopole potentialy’y and the topological index is given by Quiros and Mittelbrunn
[19]
1

— | dT4 = n1. (5.11)

27T S2
In conclusion, if we normalizé = (n1, n2, n3) as integers with no common divisor, then
global solutions to the instant@guation (2.8with the boundary conditiof4.2) describe
manifolds of special holonomy which behave IR&/Z,,, x CP(2) near the singular orbit.
For example the Calabi metric which has= (1, 1, —2) is a hyper-Kahler metric on
T* CP(2) with a fiberC2 = R%. Concerning the examples of ALC solutionsSection 3
the solution(3.7)with 7 = (1, —1, 0) has a trivial fibeiR*, while the fiber of the solution
(3.9)with7 = (2, —1, —1) isR*/Z,. By the constrain4.9)onii, among our ALC solutions
(3.5)only the solution(3.7) gives a complete metric of Spin) holonomy without orbifold
singularities.

6. L2-normalizable har monic 4-forms

In this section, we considdt?-normalizable harmonic 4-forms on ALC manifolds of
Spin(7) holonomy. For the metri¢2.2) of cohomogeneity one, we assume the following
self-dual 4-formG:

G = ul(l)(60567+ 61243) + Mz(t)(60473+ 62561) + u3(t)(€0127+ 83654)
+u4(l‘)(€0315+ 6‘4267+ 60524+ 66371+60461+ 67325+ 60362+65471), (61)

wheree®d — ¢ A ¢ A e¢ A e, If uy = 1 for all A, then the 4-formG is equal to the
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calibrations2. The closeness conditiorGd= 0 is expressed by the equations
%(azbzul) = 4abcuy — 2n1fb%uz — 2npfalus,
%(azczuz) = 4abcuy — 2n1fc2uy — 2n3fa2u3,
%(bzczug) = dabcuy — 2nofcug — 2nafblus,
%(abcfm) = f(a®uz + b%uz + c?uy). (6.2)

The instanton equation leads to a linear relation as the first integral
U1+ up + usz + 4ug =k, (6.3)

where the constarit should be chosen to zero by ti&-normalizability of the 4-form
G. This choice is also consistent with the criterions for unbroken supersynirfetry
compactifications oM theory on manifolds of Spii7) holonomy[20]:

«G=G, w=0 GAR=0, (6.4)

wherew is the 2-form defined by = GapegWancte? A ef . In fact, our ansatz satisfies
*G = G, = 0 automatically and the last equation requires precisely the relégiGh
with £ = 0. Thus following[8—10], one can construct supersymmetric M2-branes using the
L?-normalizable solutions b.2).

In order to obtain explicit solutions 6.2), we take the ALC solutior(3.7) as the
background metric. Then the radial coordinateins from the singular orbit at= (4/3)¢
to infinity. It is convenient to introduce the new variables

u = b2c?us — a®cuy, v = b2c%uz + a®c®uy, w = a®bu;. (6.5)

After eliminatingu4 by (6.3)and further taking derivatives of the first-orasuations (6.2)
we obtain the Fuchs type differential equatfon:

d3 d? d
a3 + Pl(r)ﬁu + Pz(r)au + p3(r)u =0, (6.6)
where

8(2560+ 123842 — 29160 + 10206-° + 6561-8)

P = 856 1 2/3) — 230 + 43 — 4307 + 2092 — 8’
_ 2(—10240+ 26496 — 116640* + 72900-° 4 32805°)
P20) = 8126+ 273 — 23 + 43 — 43O 2+ 20& 7 — §)’
48r(9r2 + 10
pa(r) = &+ 109 6.7)

_ r+2/3)(r—-2/3)r+4/3)r — 4/3)(9,,2 120(92—8)

5 We thank Katrin Becker for pointing out an error in the original version.
6 We set the length parametein the solution(3.7)to unity for convenience.
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This equation can be integrated by imposing the regularity of the solution at the regular

singular point- = 4/3 and we find a solution
27r2(9r2 — 40)

(r +2/3)(r = 2/3)(r +4/3)%

The remaining functions andw are given by taking derivatives ¢.8). Finally, we obtain
an L2-normalizable harmonic 4-forr@ in the regiornr > 4/3:

ulr) = (6.8)

2(160— 72r2 4 2433 4 81r%)

M+ 2/32( — 2/3)2(r + 4/3)%

3(32+ 48 — 72r2 + 1353)
C2r3(r — 2/3)(r + 2/3)2(r +4/3)°

512+ 768 — 14402 — 47523 + 6484 + 2435
"= 6r3(r + 2/3)(r — 2/3)2(r + 4/3)3 ’
64+ 144 + 180-2 — 813

M B0  2/3)(r — 2/3)(r + 4/3)%

uz =

(6.9)
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Appendix A

The spin connection on the coset spacg3U (1) is obtained by the Maurer—Cartan
equation for the left invariant 1-forms of $8). To derive the instanton equation i
symmetric form, we here present thg symmetric SWU3) Maurer—Cartan equation:

do1=3X1AT1— X0 AT +kaATs No2+kpTg A oo,

dop = X1 A1 —XoAT1 —kaTa ANo1—kpTg A o7,

d¥1 =t A01— 12 A2+ puaTa A X2+ pupTp A X,

dX2 = —t1no2—12A01 — uaTa N X1 —pupTp A X4,

dry=01 A X1 —02 A X2+ vaTa A2+ vRTE A 12,

drp = —01 A X2 —02 A X1 —vaTa AT1—veTg A T1,

dT4 = 20401 A o2 + 2B X1 N X2 + 2yAT1 A T2,

dTp = 2apo1 A o2+ 2B X1 A X2 + 2ypT1 A T2. (A.2)
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This form of the Maurer—Cartan equation is symmetric under the (cyclic) permutation of
(o1, i, 7;).” We have introduced parametetss, v, «, i, v, which describe the “coupling”

of the Cartan generatot$4, T}. The condition d = 0, or the Jacobi identity implies the
following constraints for them:

ap+Ba+yva=ap+Bp+ys =0, KA+ ta+va=kp+up+vp=0,
kaPa+«kpBp =kava+kpys =1, MAYA + UBYB = (ada + upap =1,
vaas 4+ vpapg = vafa +vpfp =1 (A.2)

These equations can be solved in the form

1 1 1
ko = Z(,BB —VB), kg = _Z(,BA — YA, na = —Z(OlB — ¥B)»

1 1 1
mp =@ =Ya). va = —(az = fp), vg = ——(aa = fa) (A3)

with A = Baap — aaBp leaving four free parametefa4 g, B4, 5). We may further put
the “orthogonality” conditions

asap + BaPp + vayp =0, KAkp + papp +vavp =0, (A.4)

which reduces one parameter. A standard choice of parametejg]as.

(OZA, ﬁAs VA) = (1s 13 _2)7 (C(B, IBBs VB) = (17_1» O)v
A, LA, UA) = (_1/27 _1/27 1)7 (KB’ MB, l)B') - (_3/27 3/27 O)’ (A5)

and the remaining three parameters correspond to the two scalings of gacand the
overall rotation.

Appendix B

In this appendix, we present a perturbative analysis of the(Bpgmavitational instanton
equation based on the coset spac&ptBp(1) and discuss the relation to the exact regular
solutions constructed ii6,7,10] Let us write the Spifv) metric in the form

g =di? + a2 + 22) + b(1)%0? + c(0)*(tF + 14 + T2 + D). (B.1)

Here {¥,, o, 7;} are 1-forms defined by using the Maurer—Cartan forms q25f0]
and{a, b, ¢} are functions of the radial variableassociated with the decomposition of the
isotropy representation €0 /sp(1) = p1®p2®p3 with dimensions 2, 1 and 4, respectively.
The instanton equation is given by
b a? . b2 b a b
'=1____’ b:_——’ = — —_— BZ
“ 2a 2 2q2 2 ¢ c + 2c (B2)
7 To compare with the one §9], we make an exchangg; <> X, and a change of notation and sign, v2) —

(t1, —72)-
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We now assume that near= 0 the principal orbit is locally of the form
Sp(2)
Sp(1)

wheres? collapses as — 0, while $* remains with a finite radius atr = 0. Then on the
singular orbit the boundary condition for the metric functions can be written as

— 8% x 54, (B.3)

a(t) — 3t, b(t) — 3t, c(t) > m (B.4)

for + — 0. The perturbative solution ¢B.2) with the boundary conditio(B.4) is
t 1-/1\? t 1 _- 1\?
=—_[14+= — =—l1==¢ Y =
a(t) 2<+2Q<m>+ ) b(1) 2( 2(Q+)<m)+ )
2
c(t):m(l—i-:—g(L) _|_) (B.5)
8\m

This solution includes a free paramet@rin addition to the scale parameter Thus the
structure is very similar to that of the soluti¢a.6), although the geometrical setting is
different. Fortunately, in this case, all regular S@inmetrics are known in the closed form
[6,7,10]and so we can read the condition f@radmitting global solutions. By making the
power series expansion of the known solutions at O we find that the global solutions
can arise in the parameter regigh> —1/3: the perturbative solutions lift to the metrics
of Spin(7) holonomy defined on the bundle of chiral spinors os&rMore precisely, the
solutions in the regions: (a}1/3 < Q0 < 0, (b) 0 = 0, (c) 0 > O lift to the ALC
metricng, Bg andBg, respectively, using the notation of Cveét al.[10]. The boundary

0 = —1/3 corresponds to the metric of Spih holonomy obtained if6,7], and the limit

0O — oo reduces to the metric @ » holonomy on thél3 bundle overs* [6,7]. The ALC
solutions in this paper corresponds to the soluBgrand we expect there are deformations
like B, andBg in our case too.
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