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Abstract

We investigate the Spin(7) holonomy metric of cohomogeneity one with the principal orbit
SU(3)/U(1). A choice ofU(1) in the two-dimensional Cartan subalgebra is left as free and this
allows us to manifestΣ3 = W(SU(3)) (=the Weyl group) symmetric formulation. We find asymp-
totically locally conical (ALC) metrics as octonionic gravitational instantons. These ALC metrics
have orbifold singularities in general, but a particular choice of theU(1) subgroup gives a new
regular metric of Spin(7) holonomy. Complex projective spaceCP(2) that is a supersymmetric
four-cycle appears as a singular orbit. A perturbative analysis of the solution near the singular orbit
shows an evidence of a more general family of ALC solutions. The global topology of the manifold
depends on a choice of theU(1) subgroup. We also obtain anL2-normalizable harmonic 4-form in
the background of the ALC metric.
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1. Introduction

In supersymmetric compactifications of superstrings andM theory the compact mani-
fold must allow parallel spinors and hence has a special holonomy. Among manifolds of
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special holonomy, the holonomy groupsG2 in seven dimensions and Spin(7) in eight di-
mensions are exceptional ones. Recently, compactification ofM theory onG2 manifold
has been discussed extensively in connection withN = 1 supersymmetric gauge theory in
four dimensions[1–5]. Though it is less studied, the geometry of Spin(7) manifold is rel-
evant to three-dimensionalN = 1 Yang–Mills theory. Manifolds of exceptional holonomy
with branes wrapping on a supersymmetric cycle are also useful for establishing the grav-
ity/gauge theory correspondence that generalizes the AdS/CFT correspondence. In addition
to few basic examples ofG2 and Spin(7) metrics on the total space of vector bundles[6,7],
we now have an increasing list of explicit metrics[8–14]. All these examples are metrics on
non-compact manifolds and of cohomogeneity one. There is a (rigid) supersymmetric cycle
and the non-compact manifold may be identified as the normal bundle of the supersym-
metric cycle. In studying the dynamics of supersymmetric compactifications of superstring
andM theory, we are especially interested in the behavior when the manifold develops
singularities. Potentially there are various types of singularities, but an important class of
singularities in supersymmetric dynamics is the isolated conical singularity that arises when
a supersymmetric cycle is shrinking. In such cases the stringy geometry is believed to be
governed by a tubular neighborhood of the singularity or the shrinking supersymmetric cy-
cle, where the above explicit metrics on the normal bundle are available. Furthermore, the
geometry of such metrics often shows some universal feature that is independent of the way
singularities or supersymmetric cycles are embedded in a manifold of special holonomy.
The geometry of ADE singularities inK3 surface and the conifold transition in Calabi–Yau
threefold are typical examples and we expect it is also the case with exceptional holonomy.

Let us review the basic geometry of manifolds of cohomogeneity one, following[15–17].
A Riemannian manifold(M, g) is called cohomogeneity one, if there is an isometric action
on M of a Lie groupG with generic orbit of codimension one. The generic orbitG/K is
called principal orbit. There is an open intervalI in real numbers with coordinatet , such that
M̃ := I × G/K is an open dense subset inM. The compliment ofM̃ consists of singular
orbits of lower dimensions, where we have a larger isotropy subgroupH (K ⊂ H ⊂ G).
A tubular neighborhood of the singular orbitQ = G/H is diffeomorphic to an open disk
bundle of the normal bundle ofQ. Then the principal orbits are the hypersurfaces which
are the sphere bundles overQ. This meansH/K is diffeomorphic to a sphereSk. Thus,
as the radius of the sphere tends to zero, the principal orbits collapse to the singular orbit.
Furthermore, the existence of a smooth complete metric on the normal bundle implies that
the singular orbit must be a minimal submanifold. We see the metric of cohomogeneity
one is well suited for describing the geometry of collapsing supersymmetric cycles by
identifying its normal bundle with a manifold of cohomogeneity one. To find out explicit
metrics we begin with the fact that oñM the metricg takes the following form:

g = dt2 + gt , (1.1)

where the intervalI becomes a geodesic line. For each fixed “time”t , gt is a homogeneous
metric of the principal orbitG/K. Hence if we assume that the metric is of cohomogeneity
one, the condition of Ricci-flatness, or the Einstein equation in general, is reduced to a system
of non-linear ordinary differential equations with respect to the transverse coordinatet to
the principal orbit.
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In this paper, we consider eight-dimensional metrics of cohomogeneity one with the
principal orbit SU(3)/U(1). Part of our analysis is quite parallel to the case with the principal
orbit Sp(2)/Sp(1) which has been worked out in[10], but there is a new feature that arises
from the Weyl group symmetryΣ3 = W(SU(3)). We shall pay attention to this symmetry.
In Section 2, we derive a first-order system of non-linear differential equations from the
octonionic self-duality of the spin connection. If we choose vielbein (or metric ansatz)
appropriately, the octonionic self-duality of the spin connection implies an existence of
covariantly constant 4-form which characterizes Spin(7) holonomy. We also show that there
is a superpotential which implies the first-order system. InSection 3, we present special
solutions which give asymptotically locally conical (ALC)[10] metrics. Our ansatz for
special solution was motivated by the one in[13]. Compared with ALC solutions in[10,13],
our solution takes more general form to keep the Weyl groupΣ3 symmetry manifest. The
singular orbit of SU(3)/U(1) model is the complex projective spaceCP(2) = SU(3)/U(2)

which is self-dual Einstein but not spin. This is in a sharp difference from the Sp(2)/Sp(1)

case whose singular orbit is the four-dimensional sphereS4 = Sp(2)/Sp(1) × Sp(1) which
is self-dual Einstein and spin[6]. Thus the issue of global topology is more subtle in our case.
We make a perturbative analysis around the singular orbit inSection 4and find one more
parameter in addition to the scale parameter in the explicit ALC solutions inSection 3. This
additional parameter is an evidence for the existence of non-trivial deformation of our ALC
metrics and numerical simulations support it. InSection 5, we discuss the global topology
that depends on a choice of the embedding ofU(1) subalgebra. In general the fiber over the
singular orbitCP(2) is the Lens spaceS3/Zn which leads to orbifold singularities. But there
is a particular choice ofU(1) embedding which is free from orbifold singularities. With
this choice ofU(1) subalgebra, our ALC solution gives a new Spin(7) metric on a vector
bundle overCP(2). Finally, Section 6is devoted to the construction ofL2-normalizable
harmonic 4-forms in the background of ALC metrics, which we can employ in constructing
supersymmetric M2-branes[9–11].

2. Octonionic instanton equation

We consider an eight-dimensional metric of cohomogeneity one with the principal
orbit SU(3)/U(1). It is convenient to describe homogeneous metric in terms of the Maurer–
Cartan forms of SU(3). The Maurer–Cartan equation is presented inAppendix A. We take
a basisTA, TB of the Cartan part andσ1,2, Σ1,2, τ1,2 of non-Cartan part. The Weyl group of
SU(3) is the permutation groupΣ3 and our basis is chosen so that the Maurer–Cartan equa-
tion exhibits Σ3 symmetry. The isotropy representation of SU(3)/U(1) is
decomposed as

su(3)

u(1)
= p1 ⊕ p2 ⊕ p3 ⊕ p4, (2.1)

wherepi (i = 1–4) are irreducibleU(1)-modules with dimp1 = dim p2 = dim p3 = 2
and dimp4 = 1. Our metric ansatz is diagonal with respect to(2.1) for all t ,

g = dt2 + a(t)2(σ 2
1 + σ 2

2 ) + b(t)2(Σ2
1 + Σ2

2) + c(t)2(τ2
1 + τ2

2 ) + f (t)2T 2
A. (2.2)
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We have taken a quotient by theU(1) subgroup generated byTB . The vielbein of the above
metric is

e0 = dt, e1 = a(t)σ1, e2 = a(t)σ2, e3 = b(t)Σ1, e4 = b(t)Σ2,

e5 = c(t)τ1, e6 = c(t)τ2, e7 = f (t)TA. (2.3)

The spin connectionωab is obtained from the conditionDea = dea + ωab ∧ eb = 0. We
consider the octonionic self-duality of the spin connection

ωab = 1
2Ψabcdωcd, (2.4)

where totally anti-symmetric tensorΨabcd is defined by the structure constants of octonions
ψabc as follows:

Ψabc0 = ψabc, 1 ≤ a, b, c, . . . , ≤ 7, Ψabcd = − 1

3!
εabcdefgψefg. (2.5)

It can be shown that(2.4) implies the 4-form defined by

Ω = 1

4!
Ψabcdea ∧ eb ∧ ec ∧ ed (2.6)

is closed and the metric has Spin(7) holonomy[18]. Explicitly, the octonionic instanton
equation in the present case is given by the structure constants:1

ψabc = +1 for (abc) = (721), (641), (135), (254), (263), (374), (765). (2.7)

We obtain the following first-order differential equations:

ȧ

a
= b2 + c2 − a2

abc
− αA

f

a2
,

ḃ

b
= c2 + a2 − b2

abc
− βA

f

b2
,

ċ

c
= a2 + b2 − c2

abc
− γA

f

c2
,

ḟ

f
= αA

f

a2
+ βA

f

b2
+ γA

f

c2
, (2.8)

where the parametersαA, βA, γA appearing in the Maurer–Cartan equation ofTA satisfy
the “traceless” conditionαA + βA + γA = 0. These parameters have to be rational for the
U(1) subgroup generated byTB to be a closed subgroup (see alsoSection 5). We assume
this condition required by topological consistency in the following. Then there exists an
integerN so that(αA, βA, γA) = (1/N)(n1, n2, n3) and �n := (n1, n2, n3) are integers
with no common divisor. SinceN is eliminated by the rescalingf → Nf, we may assume
(αA, βA, γA) = (n1, n2, n3) without any loss of generality. Our Spin(7) gravitational in-
stanton equation is manifestly symmetric under the permutation groupΣ3 = W(SU(3)),
which can be regarded as the Weyl group of SU(3).

We can also derive the octonionic instantonequation (2.8)from the Lagrangian formu-
lation. In the description of the extrinsic geometry of hypersurface, the shape operatorL of
the principal orbit SU(3)/U(1) ⊂ M̃ satisfies the equation[17]

ġt = 2gt ◦ L. (2.9)

1 An appropriate permutation of the indices and the overall parity (sign) change are necessary to match our
convention to the standard one. This parity change is an analog of the exchange of self-duality and anti-self-duality
in four dimensions and related to the orientation of the manifold.
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For the metric(2.2) it has a diagonal form

L(t) = diag

(
ȧ

a
,

ȧ

a
,

ḃ

b
,

ḃ

b
,

ċ

c
,

ċ

c
,

ḟ

f

)
. (2.10)

The Ricci-flatness condition then becomes[17]

L̇+ (trL)L− Ric = 0, (2.11)

tr L̇+ tr(L2) = 0, (2.12)

where Ric denotes the Ricci curvature of the metricgt on SU(3)/U(1). Eq. (2.11)expresses
the Ricci-flatness condition in directions tangent to the principal orbit, while(2.12) is
obtained by considering the normal direction, i.e.,t-direction. The Ricci-flatness of the
mixed directions is automatically satisfied. This system of non-linear differential equations
is described by the LagrangianL = T − V :

T = ((trL)2 − tr(L2))
√

detgt , V = −R
√

detgt , (2.13)

where detgt = a4b4c4f 2 andR is the scalar curvature ofgt . After some calculation, we
find

R = −2

(
a2

b2c2
+ b2

a2c2
+ c2

a2b2
− 6

a2
− 6

b2
− 6

c2

)
− 2f 2

(
n2

1

a4
+ n2

2

b4
+ n2

3

c4

)
.

(2.14)

If we take the trace of(2.11)together with(2.12), we obtain

(trL)2 − tr(L2) − R = 0, (2.15)

which gives a constraintE = T + V = 0 of this system. Therefore, the trajectories of
“point particle” living on the level setE = 0 represent Ricci-flat Riemannian manifolds.
Introducing a new time parameterτ defined by dt = a2b2c2f dτ , we can write the kinetic
term as

T = 1

2
gij

dαi

dτ

dαj

dτ
, (2.16)

where the metric is given by

gij =




4 8 8 4

8 4 8 4

8 8 4 4

4 4 4 0


 , (2.17)

andαi = (α, β, γ, σ ) with a = eα, b = eβ, c = eγ , f = eσ . The potentialV is expressed
in terms of a superpotentialW as

V = −1

2
gij ∂W

∂αi

∂W

∂αj
(2.18)
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with

W = 4abcf(a2 + b2 + c2) + 2f 2(n1b2c2 + n2a2c2 + n3a2b2). (2.19)

Thus the Ricci-flatness condition follows from the gradient flow equation:

dαi

dτ
= gij ∂W

∂αj
, (2.20)

which reproduces the instantonequation (2.8).

3. ALC solutions

Let us first make a change of variable defined by dr = f (t) dt and take the following
ansatz to solve the instantonequation (2.8):

a2(r) = 2n1

α1 − α2
(r − α1)(r − α2), b2(r) = 2n2

β1 − β2
(r − β1)(r − β2),

c2(r) = 2n3

γ1 − γ2
(r − γ1)(r − γ2), (3.1)

so that we havea2(r), b2(r), c2(r) ∼ r2 asr → ∞. The overall normalizations are fixed
by the requirement that we can make a quadrature of the differential equation forf (r) to
obtain

f 2(r) = (r − α1)(r − β1)(r − γ1)

(r − α2)(r − β2)(r − γ2)
. (3.2)

Sincef (r) ∼ constant asr → ∞ in our ansatz, asymptotically there is anS1 of a constant
radius at infinity. Thus solutions obtained by this ansatz will give ALC metrics in the sense
of Cvetǐc et al.[10]. We find that if the parameters obey

α1 − α2 = 2n1, β1 − β2 = 2n2, γ1 − γ2 = 2n3, (3.3)

and

α1 + β1 = 2γ2, β1 + γ1 = 2α2, γ1 + α1 = 2β2, (3.4)

then the ansatz(3.1)gives a Spin(7) gravitational instanton. We have expressed the condi-
tions in a completelyΣ3 symmetric manner. Note that due to the constraintn1+n2+n3 = 0,
one of the six conditions is redundant and we have one free parameter that corresponds to
a translation of the radial coordinater. After rescaling the radial coordinater → r/1 by an
arbitrary positive parameter1 with dimensions of length, our ALC solutions can be written
as

a2(r) = (r − α11)(r − α21), b2(r) = (r − β11)(r − β21),

c2(r) = (r − γ11)(r − γ21), f 2(r) = 12 (r − α11)(r − β11)(r − γ11)

(r − α21)(r − β21)(r − γ21)
(3.5)
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with the conditions(3.3) and (3.4). The asymptotic form of the metric is

g ∼ dr2 + r2 dΩ6 + 12T 2
A, (3.6)

where dΩ6 is a homogeneous metric on the flag manifold SU(3)/U(1) × U(1), which is
the twistor space ofCP(2).

Let us look at a few special examples, where a cancellation of a zero and a pole of the
rational functionf 2 takes place.

1. �n = (1, −1, 0)

In this case we can takeγ1 = γ2 = 0 by a translation ofr. Then the solution is

a2(r) = (r − 4
31)(r + 2

31), b2(r) = (r + 4
31)(r − 2

31), c2(r) = r2,

f 2(r) = 12 (r − 4
31)(r + 4

31)

(r + 2
31)(r − 2

31)
. (3.7)

The solution has the same structure2 as newG2 metrics in[13] based onS3 × S3.
The metric is regular in the regionr > 41/3. At the boundarya2 → 0, f 2 → 0 but
b2 = c2 = 1612/9. Sinceb2 andc2 approach the same boundary value, we haveCP(2)

as a singular orbit (see the next section).
2. �n = (1, 1, −2)

In this caseαi = βi has to be satisfied and we obtain a reduced solution witha2 = b2.
We takeα1 = β1 = 1. Then the solution is

a2(r) = (r − 1)(r + 1), b2(r) = a2(r), c2(r) = (r + 31)(r − 1),

f 2(r) = 12 (r − 1)(r + 31)

(r + 1)2
. (3.8)

We see the solution has the same form as the simplest solution (denoted asA8) among
new Spin(7) metrics in[10]. The metric is regular in the regionr > 1 and atr = 1 all
the coefficients are linearly vanishing. Thus the principal orbit SU(3)/U(1) collapses to
a point and the manifold has curvature singularities atr = 1, since SU(3)/U(1) is not
homeomorphic toS7.

3. �n = (2, −1, −1)

This is obtained from the second example simply by the sign flip and a permutation,
but the global topology is different as we will see shortly. In the same way as above the
solution is

a2(r) = (r − 31)(r + 1), b2(r) = (r − 1)(r + 1), c2(r) = b2(r),

f 2(r) = 12 (r + 1)(r − 31)

(r − 1)2
. (3.9)

The regular region isr > 31 and in contrast to the second example we haveCP(2) with

2 It is only at the level of solutions to the first-order system and does not mean the geometry is the same, since
the starting coset space is different.
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finite volume at the boundary. This solution corresponds to the solution denotedB8 in
[10].

4. Perturbation around the singular orbit

In this section, we will give a perturbative expansion in a small neighborhood of the
singular orbit(t = 0) for the Spin(7) gravitational instantonequation (2.8). A mathemat-
ical foundation may be found in[17]. Our metric is written in the formg = dt2 + gt ,
wheregt (t ≥ 0) is a one-parameter family of SU(3)-invariant metrics on the principal
orbit SU(3)/U(1). We assume that near the boundaryt = 0 the orbit is locally of the
form

SU(3)

U(1)
→ S3 × SU(3)

U(2)
, (4.1)

whereS3 denotes a round 3-sphere whose radius tends to zero att = 0, and the singular
orbit SU(3)/U(2) is a complex projective spaceCP(2) whose size remains non-vanishing
at t = 0. Thus, if we choose the rate of collapse of theS3 factor appropriately, the manifold
approachesR4 × CP(2) at short distance; it has topologically the same local behavior as
the hyper-Kähler manifoldT ∗ CP(2). In general a singular orbit gives a singularity of the
instanton equation and we have no smooth solution at the singularity. However, in our case,
the very geometric nature of the equation allows a smooth solution in a neighborhood around
a singular orbit.

Due to theΣ3 symmetry of our instanton equation, we have three types of possible
boundary conditions for the limitt → 0:

g → dt2 + t2

(
T 2

A

n2
1

+ σ 2
1 + σ 2

2

)
+ m2(Σ2

1 + Σ2
2 + τ2

1 + τ2
2 ), (4.2)

g → dt2 + t2

(
T 2

A

n2
2

+ Σ2
1 + Σ2

2

)
+ m2(σ 2

1 + σ 2
2 + τ2

1 + τ2
2 ), (4.3)

g → dt2 + t2

(
T 2

A

n2
3

+ τ2
1 + τ2

2

)
+ m2(σ 2

1 + σ 2
2 + Σ2

1 + Σ2
2), (4.4)

wherem is a scale parameter corresponding to the size ofCP(2). By choosing a boundary
condition theΣ3 symmetry is broken to theZ2 symmetry. For each choice of the boundary
condition which specifies aCP(2) embedded in SU(3)/U(1), the unit volume element�vα

(α = 1, 2, 3) of theCP(2) is given by

�v1 = e3 ∧ e4 ∧ e5 ∧ e6, �v2 = e1 ∧ e2 ∧ e5 ∧ e6, �v3 = e1 ∧ e2 ∧ e3 ∧ e4,

(4.5)

respectively. For all three cases the calibrationΩ is given by(2.6) satisfies the equation
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|Ω(�vα)| = 1. We therefore see that the singular orbitCP(2) appearing at the boundary is a
Cayley submanifold (supersymmetric four-cycles) in Spin(7) holonomy manifold.

The solutions with these three boundary conditions and the correspondingCP(2)’s are
permuted by the action ofΣ3. For concreteness, we will consider from now on the first
boundary condition(4.2). The quantityΣ2

1 + Σ2
2 + τ2

1 + τ2
2 represents the Fubini–Study

metric onCP(2) and T 2
A/n2

1 + σ 2
1 + σ 2

2 locally the metric on the unit 3-sphere. More
precisely, the metricg would have an orbifold singularity att = 0 unless we choose the
value of�n appropriately, since the latter represents the metric on the Lens spaceS3/Zn in
general rather thanS3 globally (see the next section). The perturbative series expansion
around the singular orbitCP(2) yields

a(t) = t

(
1 − 1

2
(Q + 1)

(
t

m

)2

+ · · ·
)

,

b(t) = m

(
1 + 1

6

(
4 − n2

n1

)(
t

m

)2

+ · · ·
)

,

c(t) = m

(
1 + 1

6

(
4 − n3

n1

)(
t

m

)2

+ · · ·
)

,

f (t) = t

n1

(
1 + Q

(
t

m

)2

+ · · ·
)

. (4.6)

It should be noticed that the solution is not uniquely determined by the boundary condition
and it includes an additional free parameterQ. The expansion(4.6) is a consequence of
the assumption(4.2) and valid for any solution that is smooth around the singular orbit.
However, it is not at all clear that the local perturbative solution(4.6)can be extended to a
global complete metric. There should be some bound onQ that may depend on a choice of
�n. One can obtain an example of local solution that extends to a complete metric by setting
�n = (1, 1, −2)3 andQ = −2/3. Then it can be extended to the Calabi hyper-Kähler metric
onT ∗ CP(2) of Sp(2) holonomy[9,15]

a2(r) = 1

2
(r2 − m2), b2(r) = 1

2
(r2 + m2), c2(r) = r2,

f 2(r) = r2

4

(
1 −

(m

r

)4
)

(4.7)

with dt = dr/(1 − (m/r)4)1/2. Note that the asymptotic behavior of the Calabi metric at
infinity is different from the ALC metrics.

We can also find the specialization which reproduces the ALC metrics described in the
previous section. Let us consider the solution(3.5)whose radial coordinate is constrained

3 With this choice of�n the ALC solution cannot have a singular orbit with finite volume (see the second example
in Section 3).
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to ber ≥ α11. From the conditions(3.3) and (3.4)we have

α1 − α2 = 2n1, α1 − β1 = 4
3(n1 − n2), α1 − β2 = 2

3(n1 − n3),

α1 − γ1 = 4
3(n1 − n3), α1 − γ2 = 2

3(n1 − n2). (4.8)

Thus if we choose the parameter�n as

n1 > 0, n1 > n2, n1 > n3, (4.9)

then the solution{a, b, c, f } is non-vanishing in the regionr > α11, and so the ALC metric
is non-singular. The behavior of the metric nearr = α11 is given by

g → dρ2 + ρ2

(
T 2

A

n2
1

+ σ 2
1 + σ 2

2

)
+ 12(α1 − β1)(α1 − β2)(Σ2

1 + Σ2
2 + τ2

1 + τ2
2 ),

(4.10)

whereρ2 = 1(α1 − α2)(r − α11). Settingm = 1
√

(α1 − β1)(α1 − β2), we reproduce
Eq. (4.2)and higher order calculations yield the relation

Q = − 2

27

(
13+ 2n2n3

n2
1

)
. (4.11)

The parameter in the perturbative solutionQ implies a possibility of non-trivial deformations
of the ALC solutions(3.5). Although we have not been able to find general solutions in closed
form, numerical simulations of the instanton equation indicate a family of global solutions
under some conditions ofQ. For example, in the case of�n = (1, −1, 0), the condition
is given byQ ≤ −0.35 approximately and the exact solution(3.7) with Q = −26/27
is included in this region. The existence of more general solutions is also supported by a
similar analysis for the coset space Sp(2)/Sp(1), where the general solutions of complete
metric have been obtained[10]. InAppendix B, it is shown briefly how we can accommodate
a local perturbative analysis around the singular orbit of Sp(2)/Sp(1) model to the global
solutions in[10].

5. The issue of global topology

Let us consider the global topology of solutions with boundary condition(4.2) by cal-
culating explicitly the 1-formsσ1, σ2 andTA describing the metric on the unit 3-sphereS3

locally. Our calculation shows that near the boundary the topology of the principal orbit is
in generalS3/Zn1 × CP(2) rather thanS3 × CP(2). The integern1 comes in here since we
take the first boundary condition(4.2). For other boundary conditions(4.3) and (4.4), n1 is
replaced byn2 or n3 accordingly.

To consider the topology of the fiber over a point of the base spaceCP(2) we fix
the coordinates onCP(2). ThenΣi = τj = 0 on the fiber and the SU(3) Maurer–Cartanpar
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equation reduces to the following form:

dσ1 = κATA ∧ σ2 + κBTB ∧ σ2, dσ2 = −κATA ∧ σ1 − κBTB ∧ σ1,

dTA = 2αAσ1 ∧ σ2, dTB = 2αBσ1 ∧ σ2. (5.1)

In fact, this Maurer–Cartan equation comes from the following choice of the generatorsEα

(α = 1, 2 orA, B) of U(2):

E1 =




0 0 0

0 0 1

0 1 0


 , E2 =




0 0 0

0 0 −i

0 i 0


 ,

EA = − 1

∆




αB 0 0

0 βB 0

0 0 γB


 , EB = 1

∆




αA 0 0

0 βA 0

0 0 γA


 . (5.2)

By expanding a left invariant 1-formω of the subgroupU(2) ⊂ SU(3)

ω = i(σ1E1 + σ2E2 + TAEA + TBEB), (5.3)

and using the relations inAppendix A, we can check the equation dω + ω ∧ ω = 0 implies
(5.1).

The left invariant 1-formω is represented byω = g−1 dg in terms of a group element
g ∈ U(2). To parameterize the group elementg we use Euler angles(θ, φ, ψ) with the
range

0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π (5.4)

of SU(2) and aU(1) coordinateχ defined by

UB(1) = exp( 1
2i∆χEB) = diag(ein1χ/2, ein2χ/2, ein3χ/2), (5.5)

where(n1, n2, n3) := (αA, βA, γA) are integers with no common divisor4 satisfying the
traceless conditionn1 + n2 + n3 = 0. With these coordinates the group elementg is given
by

g(φ, θ, ψ, χ) = ei(φ/2)E3 ei(θ/2)E2 ei(ψ/2)E3 ei(∆χ/2)EB

=




ein1χ/2 0 0

0 cos

(
θ

2

)
ei(ψ+φ+n2χ)/2 sin

(
θ

2

)
e−i(ψ−φ−n3χ)/2

0 − sin

(
θ

2

)
ei(ψ−φ+n2χ)/2 cos

(
θ

2

)
e−i(ψ+φ−n3χ)/2


 , (5.6)

where

E3 = αAEA + αBEB =

 0 0 0

0 1 0
0 0 −1


 . (5.7)

4 See the discussion belowEq. (2.8).
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We now obtain the 1-forms from(5.3)

σ1 = 1
2 sinθ cos(ψ + 1

2(n2 − n3)χ) dφ − 1
2 sin(ψ + 1

2(n2 − n3)χ) dθ,

σ2 = 1
2 sinθ sin(ψ + 1

2(n2 − n3)χ) dφ + 1
2 cos(ψ + 1

2(n2 − n3)χ) dθ,

TA = 1
2n1(dψ + cosθ dφ). (5.8)

These 1-forms give a metric

T 2
A

n2
1

+ σ 2
1 + σ 2

2 = 1

4
(dθ2 + sin2θ dφ2) + 1

4
(dψ + cosθ dφ)2 (5.9)

on the coset spaceU(2)/UB(1) whose topology is locallyS3, but not globallyS3. In fact
for each integerp = 0, 1, . . . , n1 − 1 we can find an integerq such that we have

g

(
φ, θ, ψ + 4πp

n1
, χ + 4πq

n1

)
= g(φ, θ, ψ, χ). (5.10)

Thus the angleψ is identified withψ+4πp/n1, which impliesEq. (5.9)expresses the metric
on S3/Zn1. This is the total space ofU(1)-bundle overS2 with a connection (Wu–Yang
monopole potential)TA and the topological index is given by Quiros and Mittelbrunn
[19]

1

2π

∫
S2

dTA = n1. (5.11)

In conclusion, if we normalize�n = (n1, n2, n3) as integers with no common divisor, then
global solutions to the instantonequation (2.8)with the boundary condition(4.2)describe
manifolds of special holonomy which behave likeR4/Zn1 × CP(2) near the singular orbit.
For example the Calabi metric which has�n = (1, 1, −2) is a hyper-Kähler metric on
T ∗ CP(2) with a fiberC2 = R4. Concerning the examples of ALC solutions inSection 3,
the solution(3.7)with �n = (1, −1, 0) has a trivial fiberR4, while the fiber of the solution
(3.9)with �n = (2, −1, −1) isR4/Z2. By the constraint(4.9)on�n, among our ALC solutions
(3.5)only the solution(3.7)gives a complete metric of Spin(7) holonomy without orbifold
singularities.

6. L2-normalizable harmonic 4-forms

In this section, we considerL2-normalizable harmonic 4-forms on ALC manifolds of
Spin(7) holonomy. For the metric(2.2) of cohomogeneity one, we assume the following
self-dual 4-formG:

G = u1(t)(e0567+ e1243) + u2(t)(e0473+ e2561) + u3(t)(e0127+ e3654)

+u4(t)(e0315+ e4267+ e0524+ e6371+ e0461+ e7325+ e0362+ e5471), (6.1)

whereeabcd = ea ∧ eb ∧ ec ∧ ed . If uA = 1 for all A, then the 4-formG is equal to the
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calibrationΩ. The closeness condition dG = 0 is expressed by the equations

d

dt
(a2b2u1) = 4abcu4 − 2n1fb2u2 − 2n2fa2u3,

d

dt
(a2c2u2) = 4abcu4 − 2n1fc2u1 − 2n3fa2u3,

d

dt
(b2c2u3) = 4abcu4 − 2n2fc2u1 − 2n3fb2u2,

d

dt
(abcfu4) = f (a2u3 + b2u2 + c2u1). (6.2)

The instanton equation leads to a linear relation as the first integral

u1 + u2 + u3 + 4u4 = k, (6.3)

where the constantk should be chosen to zero by theL2-normalizability of the 4-form
G. This choice is also consistent with the criterions for unbroken supersymmetry5 for
compactifications ofM theory on manifolds of Spin(7) holonomy[20]:

∗G = G, ω = 0, G ∧ Ω = 0, (6.4)

whereω is the 2-form defined byω = GabcdΨabcfe
d ∧ ef . In fact, our ansatz satisfies

∗G = G, ω = 0 automatically and the last equation requires precisely the relation(6.3)
with k = 0. Thus following[8–10], one can construct supersymmetric M2-branes using the
L2-normalizable solutions of(6.2).

In order to obtain explicit solutions of(6.2), we take the ALC solution(3.7) as the
background metric. Then the radial coordinater runs from the singular orbit atr = (4/3)1

to infinity. It is convenient to introduce the new variables

u = b2c2u3 − a2c2u2, v = b2c2u3 + a2c2u2, w = a2b2u1. (6.5)

After eliminatingu4 by (6.3)and further taking derivatives of the first-orderequations (6.2),
we obtain the Fuchs type differential equation:6

d3

dr3
u + p1(r)

d2

dr2
u + p2(r)

d

dr
u + p3(r)u = 0, (6.6)

where

p1(r) = 8(2560+ 12384r2 − 29160r4 + 10206r6 + 6561r8)

81r(r + 2/3)(r − 2/3)(r + 4/3)(r − 4/3)(9r2 + 20)(9r2 − 8)
,

p2(r) = 2(−10240+ 26496r2 − 116640r4 + 72900r6 + 32805r8)

81r2(r + 2/3)(r − 2/3)(r + 4/3)(r − 4/3)(9r2 + 20)(9r2 − 8)
,

p3(r) = − 48r(9r2 + 104)

(r + 2/3)(r − 2/3)(r + 4/3)(r − 4/3)(9r2 + 20)(9r2 − 8)
. (6.7)

5 We thank Katrin Becker for pointing out an error in the original version.
6 We set the length parameter1 in the solution(3.7) to unity for convenience.
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This equation can be integrated by imposing the regularity of the solution at the regular
singular pointr = 4/3 and we find a solution

u(r) = 27r2(9r2 − 40)

(r + 2/3)(r − 2/3)(r + 4/3)2
. (6.8)

The remaining functionsv andw are given by taking derivatives of(6.8). Finally, we obtain
anL2-normalizable harmonic 4-formG in the regionr ≥ 4/3:

u1 = 2(160− 72r2 + 243r3 + 81r4)

r(r + 2/3)2(r − 2/3)2(r + 4/3)3
,

u2 = − 3(32+ 48r − 72r2 + 135r3)

2r3(r − 2/3)(r + 2/3)2(r + 4/3)
,

u3 = 512+ 768r − 1440r2 − 4752r3 + 648r4 + 243r5

6r3(r + 2/3)(r − 2/3)2(r + 4/3)3
,

u4 = 64+ 144r + 180r2 − 81r3

r3(r + 2/3)(r − 2/3)(r + 4/3)3
. (6.9)
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Appendix A

The spin connection on the coset space SU(3)/U(1) is obtained by the Maurer–Cartan
equation for the left invariant 1-forms of SU(3). To derive the instanton equation inΣ3
symmetric form, we here present theΣ3 symmetric SU(3) Maurer–Cartan equation:

dσ1 = Σ1 ∧ τ1 − Σ2 ∧ τ2 + κATA ∧ σ2 + κBTB ∧ σ2,

dσ2 = −Σ1 ∧ τ2 − Σ2 ∧ τ1 − κATA ∧ σ1 − κBTB ∧ σ1,

dΣ1 = τ1 ∧ σ1 − τ2 ∧ σ2 + µATA ∧ Σ2 + µBTB ∧ Σ2,

dΣ2 = −τ1 ∧ σ2 − τ2 ∧ σ1 − µATA ∧ Σ1 − µBTB ∧ Σ1,

dτ1 = σ1 ∧ Σ1 − σ2 ∧ Σ2 + νATA ∧ τ2 + νBTB ∧ τ2,

dτ2 = −σ1 ∧ Σ2 − σ2 ∧ Σ1 − νATA ∧ τ1 − νBTB ∧ τ1,

dTA = 2αAσ1 ∧ σ2 + 2βAΣ1 ∧ Σ2 + 2γAτ1 ∧ τ2,

dTB = 2αBσ1 ∧ σ2 + 2βBΣ1 ∧ Σ2 + 2γBτ1 ∧ τ2. (A.1)
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This form of the Maurer–Cartan equation is symmetric under the (cyclic) permutation of
(σi, Σi, τi).7 We have introduced parametersα, β, γ, κ, µ, ν, which describe the “coupling”
of the Cartan generators{TA, TB}. The condition d2 = 0, or the Jacobi identity implies the
following constraints for them:

αA + βA + γA = αB + βB + γB = 0, κA + µA + νA = κB + µB + νB = 0,

κAβA + κBβB = κAγA + κBγB = 1, µAγA + µBγB = µAαA + µBαB = 1,

νAαA + νBαB = νAβA + νBβB = 1. (A.2)

These equations can be solved in the form

κA = 1

∆
(βB − γB), κB = − 1

∆
(βA − γA), µA = − 1

∆
(αB − γB),

µB = 1

∆
(αA − γA), νA = 1

∆
(αB − βB), νB = − 1

∆
(αA − βA) (A.3)

with ∆ = βAαB − αAβB leaving four free parameters(αA,B, βA,B). We may further put
the “orthogonality” conditions

αAαB + βAβB + γAγB = 0, κAκB + µAµB + νAνB = 0, (A.4)

which reduces one parameter. A standard choice of parameters (cf.[9]) is

(αA, βA, γA) = (1, 1, −2), (αB, βB, γB) = (1, −1, 0),

A, µA, νA) = (−1/2, −1/2, 1), (κB, µB, νB) = (−3/2, 3/2, 0), (A.5)

and the remaining three parameters correspond to the two scalings of eachTA,B and the
overall rotation.

Appendix B

In this appendix, we present a perturbative analysis of the Spin(7) gravitational instanton
equation based on the coset space Sp(2)/Sp(1) and discuss the relation to the exact regular
solutions constructed in[6,7,10]. Let us write the Spin(7) metric in the form

g = dt2 + a(t)2(Σ2
1 + Σ2

2) + b(t)2σ 2 + c(t)2(τ2
1 + τ2

2 + τ2
3 + τ2

4 ). (B.1)

Here {Σa, σ, τi} are 1-forms defined by using the Maurer–Cartan forms of Sp(2) [10]
and{a, b, c} are functions of the radial variablet associated with the decomposition of the
isotropy representation sp(2)/sp(1) = p1⊕p2⊕p3 with dimensions 2, 1 and 4, respectively.
The instanton equation is given by

ȧ = 1 − b

2a
− a2

c2
, ḃ = b2

2a2
− b2

c2
, ċ = a

c
+ b

2c
. (B.2)

7 To compare with the one in[9], we make an exchangeΣ1 ↔ Σ2 and a change of notation and sign(ν1, ν2) →
(τ1, −τ2).
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We now assume that neart = 0 the principal orbit is locally of the form

Sp(2)

Sp(1)
→ S3 × S4, (B.3)

whereS3 collapses ast → 0, whileS4 remains with a finite radiusm at t = 0. Then on the
singular orbit the boundary condition for the metric functions can be written as

a(t) → 1
2t, b(t) → 1

2t, c(t) → m (B.4)

for t → 0. The perturbative solution of(B.2) with the boundary condition(B.4) is

a(t) = t

2

(
1 + 1

2
Q̃

(
t

m

)2

+ · · ·
)

, b(t) = t

2

(
1 − 1

2
(2Q̃ + 1)

(
t

m

)2

+ · · ·
)

,

c(t) = m

(
1 + 3

8

(
t

m

)2

+ · · ·
)

. (B.5)

This solution includes a free parameterQ̃ in addition to the scale parameterm. Thus the
structure is very similar to that of the solution(4.6), although the geometrical setting is
different. Fortunately, in this case, all regular Spin(7) metrics are known in the closed form
[6,7,10]and so we can read the condition forQ̃ admitting global solutions. By making the
power series expansion of the known solutions att = 0 we find that the global solutions
can arise in the parameter regionQ̃ ≥ −1/3: the perturbative solutions lift to the metrics
of Spin(7) holonomy defined on the bundle of chiral spinors overS4. More precisely, the
solutions in the regions: (a)−1/3 < Q̃ < 0, (b) Q̃ = 0, (c) Q̃ > 0 lift to the ALC
metricsB+

8 , B8 andB−
8 , respectively, using the notation of Cvetič et al.[10]. The boundary

Q̃ = −1/3 corresponds to the metric of Spin(7) holonomy obtained in[6,7], and the limit
Q̃ → ∞ reduces to the metric ofG2 holonomy on theR3 bundle overS4 [6,7]. The ALC
solutions in this paper corresponds to the solutionB8 and we expect there are deformations
like B+

8 , andB−
8 in our case too.
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[10] M. Cvetič, G.W. Gibbons, H. Lü, C.N. Pope, New complete non-compact Spin(7) manifolds. hep-th/0103155;
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